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Outline

e The physical motivations: study of medium effects on the
spectral densities of HQ and QQ correlators;

e The path-integral formulation for the problem:
— (General setting;
— The static limit: recovering the real-time effective potential;

— Preliminary numerical results of the MC simulations and of

the spectral analysis;

— Some physical insight: the HQ spectral function from a

resummed one-loop calculation;

e Conclusions and future developments.
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Our goal
We wish to perform a study resulting

e numerically less expensive then lattice calculations (hence

allowing a more robust reconstruction of the spectral function);

e capable to get a deeper physical insight on the processes involved.
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/ The basic object of our study \
G~ (t) = (O(t) O(0))

o O creates a Q or a QQ pair;

e Spectral decomposition

GZ(t) = Z ') ey (n]O(t)|m)(m|OT(0)[n)

= Z71 ) e PE Y BB ] OT(0) ) 2,

— G~ (t) is an analytic function in the strip —f<Imt< 0 =

unified description of real and imaginary-time propagation;

— HQs: external probe placed in a hot/dense medium of light

particles = {|n)} do not contain heavy quarks. /
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/ Getting the in-medium spectral function... \

e In the general case the spectral density of a correlator would be
given by
o(w)=G"(w) F G- (w);

e Dealing with the propagation of an external probe one has
G< =0, so that

+00 W '
ocw)=G"(v) = G>(t):/ ;l—ﬂe_"’“’ta(w);

— OO

e The standard procedure to get o(w) is then, exploiting the
analyticity of G~ :
T dw

G (t=—ir) = / )

- — 00 27 N——

K evaluated reconstructed /




/ The general idea \

Treat the heavy fermion propagating in a thermal bath as a point-like
particle in Quantum-Mechanics. Hence, in evaluating the HQ

euclidean correlator:

e Sum over all the possible trajectories in a given background field:

(@ 7o |ims) = / ‘Da(r')] exp [— /T o GM.@Q + gfb(:c))] |

x(1;)=x; i

e Average over all the possible field configurations (the action
accounting for medium effects)

z1(1T)=7r1 T
G>(—z’7',r1]0,r’1):Z1/ [Dzl]/[DCI)] exp [—/ dT’%Mz'ﬂ] <
0

z1(0)=7r]
T off
X exp [—g/ dT,(I)<7'/,Z1(T,))] e Ok 7]
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Which action to employ to weight the field configurations

for a hot gauge plasma?
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Scales in a weakly-coupled relativistic plasma

‘Q‘Q 0.0:9’0.0‘0

most of the scattering processes involve the exchange of
soft momenta ()~ g7

~
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e The propagation of soft (long wave-length) gauge-bosons
(Q~gT) is dressed by the interactions with the light
plasma-particle which are hard (K ~T)

The HTL effective action

e The HTL effective action (for an abelian gauge plasma):

SHTL 4 /d4 /d4yA“ )fTL( — A (y).

.
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/ A heavy “quark” in a hot gauge plasma \

Neglecting possible non-abelian effects we perform Monte Carlo
simulations for

z(T)=7r1 T
G>(—7j7',r1]0,’r/1):/ [Dz|exp [—/ dr’ <M—|— %M22>} X
0

z (O):'P’1

2 T T
X exp [%/ dT’/ dT”ATE(T’—T”,z(T’)—z(T”)>]
0 0
where

AL(Ta q) Aza%ﬂ q) + AE(T7 q)

— Fo0
= i+ | SR a0, @)0(7) + N(a”)

is expressed in terms of the HTL spectral function

prlw > 0,q) = 27| Z1(@)d(w—wr(9)) + (" —w*)BL(w,q) |

Ve Ve

K plasmon pole Landau damping /
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where:

HTL longitudinal spectral function

pr(w) = 2ImDT" (w) = 2ImAL (w + in),

0 —1
Arld’q) = 2 2 q° 1. 9%+q
q= +m7 (1 — g 1n qo_q)
10 I T I
— 0=0.5mj
8_ —
o | _|
<\|g 6
T
3
< 4 :
2_ —
0 m . .
0 0.2 0.4 0.6 0.8 1

Pole 4+ Continuum. The width is put by hand!
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Our long term goal...

...would be to address the Q) case within the same approach:

r2

r1
G>(—¢T;r1,r2\o;r’1,r;):e—<M1+M2>T/ [Dzl]/ D) x

X exp

X exp

—/dT/(l
L Jo 2

—/OdTG

/
1 2

2 T
Mz%— g_/ dTHA%j(T/—TH, z1(7") —Z1(T”)))

Mas ——/ A" AT (7 ="z () — ZQ(T”)))

X

Xexp{ /dT/ dr' AL (r =7 21 (7)) — za (7’ ))]




/ Static limit \

For M =oo the HQs are frozen to their positions. The asymptotic behavior
of the real-time QQ propagator allows the to identify the in-medium

effective potential:

G(t,’l“l—’l“g) ~ eXp[—i‘/eff(’rl—T'Q)t],

t— 00
with
‘/eff(’l“l B ’1“2) — 92/ dq (1 . eiq-(r1—r2)) Doo(w:O, Q)
effective potential (27T)3
_ 92 / dq (1 o eiq-('rl—'rg)) |: 1 —j Wm%T i|
(2m)? q>+m} - ql(g® +mp)*
scre;ing COH;SriOl’lS
2 —mprT 2
e .g-T
:_Z_w {mD—I— } —zi—ﬁ¢(mpr)
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Wide literature on the 7#0 Q@ potential

e M. Laine and collaborators: JHEP 0703:054, JHEP 0705:028,
JHEP 0709:066, JHEP 0801:043.

e N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky:
Phys.Rev.D78:014017,2008.

e A.B., J.P.Blaizot and C. Ratti, Nucl.Phys.A806:312,2008.

e A. Dumitru et al.: Phys.Lett.B662:37,2008;
Phys.Rev.D79:054019,20009...
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Numerical results
from the MC simulations for the
path-integral

> . L oo dw T
G (t=—iT) =G(1) = o € o(w)
“ ~ / o "

evaluated reconstructed

o G(7) obtained after averaging over at least 10° paths!

e The above data are used the get the HQ) spectral density through
a MEM analysis.
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Fixing values of the parameters of possible
relevance for the QGP study

2

g = (Cras, with o, =0.3
41
M = 1.5GeV (charm)

T = 200—400MeV (T/M < 1)
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/ Results for the HQ spectral function I

T=300 MeV width, . -50%
— T=300MeV, Widthstatic
---- T=300 MeV width . +50%

AN L A_»/\/

A TN
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w/M

e We set T'= 300 MeV;

e We check the sensitivity on the (gaussian) default model, satisfying:

[
2T

The appearance of a secondary peak at low-energy seems a robust feature

o(w) = 1, /d—” wolw) = M.

2T

of the spectral density.

~
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Results for the HQ

spectral function 11

— T=200 MeV
— T=250 MeV
— T=300 MeV

T=350 MeV

0

02 04 06 08 1 12 14 16 18 2 22 24 26

w/M

e Using a gaussian default model in the MEM...

e ...we perform a temperature scan.

the secondary peak moves toward lower energies.

As the temperature increases

~
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In order to interpret the numerical outcomes of
the stmulations....
...some physical insight from (weak-coupling)

thermal field theory calculations
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General setup

e Analytic non-relativistic HQ propagator

—1

G2) = z—E,—X(z,p)’

where E, =M +p*/2M and setting > = w17 corresponds to

retarded boundary conditions;

e HQ) spectral function:

['(w)

w) = 21lm RW —
7= ) = T, T Re W) + T2 ()4

with I'(w) = —2Im X% (w) == HQ spectral function non-vanishing

only for energies for which the self-energy develops an

maginary-part.
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/ HQ self-energy: resummed one-loop result \
fpo

t* 4~

@l
f po

The zero-momentum HQ) self-energy reads:

oy 2 dk /+°° dk® o 1+ N(E®)—nr(Ey)
2(p7) =9 CF/ (27)3 2 pr(k” k) pY — By — kY

— OO

Test-particle limit recovered setting np(FE)) =0, which arises
naturally in the regime 7'/M < 1

test, O\ 2 dk /+ood_k0 0 1+N(k0) N(ko)
)=y CF/ (2m)3 J, WpL(k k) pO—Ek—k0+pO—Ek+k0
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/ HQ self-energy: imaginary-part \

E, Ex Ex Ex
VA :
e K

N0

@ ®) © ©
e Plasmon-pole contribution (a and b)

Fpole(w) :gQCF/ <2dﬂl_{:)3 (ZW)ZL(]{)X

X[(1+ N(wr(k))) 6w = By —wr (k) + N(wr(k))o(w — Ex + wr (k)]

e Continuum contribution (¢ and d)

k
" (w) = ¢°Cr / (26;’_“)3 /0 dk° B (k°, k) x

K x (2m) {[1 + N(k°)] 6(w — B, — k°) + N(k”)d(w — Ex + k") } /




— Landau-damping

plasmon T=300 MeV | o
---- plasmon T=500 MeV 02—
---- plasmon T=800 MeV | | r

A S S R B B [
% 05 1 15 2 25 3 35 %

e Spectrum displaying a threshold close to M /2;

e Very narrow peaks arising from a divergence in the density of states

(Van-Hove singularities). Defining w = Ek, ,, + wr(k1/2)

Fp01€<w) _J Cr { Vo7 kl/ Zr(k1)[14+ N(wr(k1))] +

EY e 20 (k)N (i (k)
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/ HQ spectral-function \

| | T T T | T |
80— — T=200 MeV -
— T=300 MeV
— T=500 MeV
60 -
?
Q
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e}
20+ -
AN A L
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e Negative shift and broadening of the principal peak;

e Appearance of secondary peaks at energies corresponding to a

large density of states for plasmon absorption/emission pmcesses/

.
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1k — T=200 MeV
— T=300MeV
— T=500MeV

01

G(tau)

001

HQ euclidea correlator 1

14

13—

12—

G(tau)/exp(-M*tau)

11—

— T=200 MeV
— T=300 MeV
— T=500 MeV

0.001

G(0) =

S ~

2T

— 0

0 e (fm) 0 0.2 0.4 tau fm) 0.6 0.8
e Obtained (numerically) from
)= [ 52 ow);
e Its short-time behavior fullfills the sum-rules
+o00 oo
/ ;l—wa(w) =1, and —G'(0)= / d—wwa(w) = M.
i

~

/




-

HQ euclidea correlator 11

05 ; I

---- infinite M
— T=200 MeV
— T=300 MeV R——
— T=500 MeV s

03

02

In[G(tau)/exp(-M*tau)]
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0 == ‘ !

Deviations from the (universal) M =oo curve get larger as T'/M

increases;

Magnitude of free-energy shift
exp[—B AFqp] = G(B,p)

smaller than in the static case. This in agreement with the shift of the

main peak in the spectral density.

~
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Summary

The effective-action approach, introduced to derive a real-time
static potential, results very convenient to address also the
finite-mass case: QFT problem reduced to a QM problem!

Numerical results for G(7) indicates the possible existence of
secondary peaks and an important spectral strength at

low-energy:;

Resummed one-loop calculation of interest to shed light on

possible processes responsible for such a strength.
Future developments

Systematic study for different values of the HQ) mass, the
temperature and the coupling;

Addressing the QQ case.




Back-up slides




/ Evaluation of the path-integral 1 \

We can reduce

Glr,r) = /[Dz]exp[ /Tdf’ <M+;M22)]
_ / D] exp|— S]]

to the evaluation of an expectation value, by rescaling the coupling
7% — ag?
Ga(rir) = [ D2 expl-5a 2],

so that

8lnC; _< /dT /d AT — 7 2(r )—z(7”))>a
S /
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Evaluation of the path-integral 11

e For a given a the expectation value is evaluated by generating
paths distributed according to

Wal2] = Giaexm—sa[z])

e By integrating over the parameter o one gets:

/01 . 81n%2(7, ) (Gi(:(ﬁ)r)) = /01 do (A)a,

where

Gree = [M/(QWT)]3/2 exp|—Mr?/(27)].

~




/ Renormalization of the path-integral correlator \

In the path-integral correlator

z(T)=r T
GMC(T,’I“)=/ [Dzlexp [—/ dr’ (M + leQ)] X
2(0)=0 0 2
2 T T
X exp [%/ dT// dT//Ag(T/ — 7" 2(7'/) — Z(T//)):| ,
0 0

the interaction term is evaluated as:

o9 T/at
exp |- Y afAL(i—jiri— 7))

itj=1
neglecting the ¢ = j contribution:

9 T/at

2
exp % Z afAf(0,0) — exp [%atA;"—:(0,0) T]
i=1
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/ e The finite time-step a; provides a cutoff which insures dealing always\

with finite quantities in the intermediate steps;
e however we don’t want to change the continuum physics.

The link with the continuum renormalized result is:
Gren(7,7) = [Z(a)] % Gric (7, 7lay).

The renormalization factor Z(a:) can be determined in the static case:

2
—M =00 o g dq 1 1
Gren (T,T—O)—exp{?/ (27T)3 <q2 _q2+m2D>T}X

. {gz/ dq /0+°° dq° pr(q°, q) lcoshqo(f - 5/2) coth(ﬁq0/2)” |

(2m)° 2 (4°)? sinh(8¢°/2)
e 92 T/at .
Guc (1, =0) =exp | _;1a3AL<z‘ —~j,r=0)
1F£ )=
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